Structure of bovine β-lactoglobulin-lactoferrin coacervates.

نویسندگان

  • Ebru Kizilay
  • Daniel Seeman
  • Yunfeng Yan
  • Xiaosong Du
  • Paul L Dubin
  • Laurence Donato-Capel
  • Lionel Bovetto
  • Christophe Schmitt
چکیده

Lactoferrin (LF) and β-lactoglobulin (BLG) are among the protein pairs that exhibit heteroprotein coacervation, a unique and relatively unexamined type of liquid-liquid phase separation (LLPS). In prior work we found that LF and BLG undergo coacervation at highly constrained conditions of pH, ionic strength and protein stoichiometry. The molar stoichiometry in coacervate and supernatant is LF : BLG2 1 : 2 (where BLG2 represents the 38 kDa BLG dimer), suggesting that this is the primary unit of the coacervate. The precise balance of repulsive and attractive forces among these units, thought to stabilize the coacervate, is achieved only at limited conditions of pH and I. Our purpose here is to define the process by which such structural units form, and to elucidate the forces among them that lead to the long-range order found in equilibrium coacervates. We use confocal laser scanning microscopy (CLSM), small angle neutron scattering (SANS), and rheology to (1) define the uniformity of interprotein spacing within the coacervate phase, (2) verify structural unit dimensions and spacing, and (3) rationalize bulk fluid properties in terms of inter-unit forces. Electrostatic modeling is used in concert with SANS to develop a molecular model for the primary unit of the coacervate that accounts for bulk viscoelastic properties. Modeling suggests that the charge anisotropies of the two proteins stabilize the dipole-like LF(BLG2)2 primary unit, while assembly of these dipoles into higher order equilibrium structures governs the macroscopic properties of the coacervate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heteroprotein complex coacervation: bovine β-lactoglobulin and lactoferrin.

Lactoferrin (LF) and β-lactoglobulin (BLG), strongly basic and weakly acidic bovine milk proteins, form optically clear coacervates under highly limited conditions of pH, ionic strength I, total protein concentration C(P), and BLG:LF stoichiometry. At 1:1 weight ratio, the coacervate composition has the same stoichiometry as its supernatant, which along with DLS measurements is consistent with ...

متن کامل

Detection and Quantifi cation of αS1-, αS2-, β-, κ-casein, α-lactalbumin, β-lactoglobulin and Lactoferrin in Bovine Milk by Reverse-Phase High- Performance Liquid Chromatography

Bovine milk proteins has been widely studied because of the strong association and relationship with composition and technological properties of milk. Cow’s milk quality is very important, above all in such countries like Italy, where about 70% of whole milk production is used in cheese-making industry. A reversed-phase highperformance liquid chromatography (RP-HPLC) method was developed to ide...

متن کامل

Bovine β-lactoglobulin/fatty acid complexes: binding, structural, and biological properties

Ligand-binding properties of β-lactoglobulin (β-lg) are well documented, but the subsequent biological functions are still unclear. Focusing on fatty acids/β-lg complexes, the structure-function relationships are reviewed in the light of the structural state of the protein (native versus non-native aggregated proteins). After a brief description of β-lg native structure, the review takes an int...

متن کامل

Potential Anticarcinogenic Peptides from Bovine Milk

BOVINE MILK POSSESSES A PROTEIN SYSTEM CONSTITUTED BY TWO MAJOR FAMILIES OF PROTEINS: caseins (insoluble) and whey proteins (soluble). Caseins ( α S1, α S2, β , and κ ) are the predominant phosphoproteins in the milk of ruminants, accounting for about 80% of total protein, while the whey proteins, representing approximately 20% of milk protein fraction, include β -lactoglobulin, α -lactalbumin,...

متن کامل

Effect of polyelectrolyte structure on protein-polyelectrolyte coacervates: coacervates of bovine serum albumin with poly(diallyldimethylammonium chloride) versus chitosan.

Electrostatic interactions between synthetic polyelectrolytes and proteins can lead to the formation of dense, macroion-rich liquid phases, with equilibrium microheterogeneities on length scales up to hundreds of nanometers. The effects of pH and ionic strength on the rheological and optical properties of these coacervates indicate microstructures sensitive to protein-polyelectrolyte interactio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 37  شماره 

صفحات  -

تاریخ انتشار 2014